Exercise 68

For the following exercises, use the table of values that represent points on the graph of a quadratic function. By determining the vertex and axis of symmetry, find the general form of the equation of the quadratic function.

x	-2	-1	0	1	2
y	-8	-3	0	1	0

Solution

Notice that the y-values are the same for $x=0,2$. This means the axis of symmetry is $x=1$. Start with the general formula of a quadratic function in vertex form.

$$
y=a(x-h)^{2}+k
$$

The y-value corresponding to $x=1$ is 1 , so the vertex is (1,1), which means $h=1$ and $k=1$.

$$
y=a(x-1)^{2}+1
$$

Use any of the other points to determine a. For example, $y=0$ when $x=0$.

$$
\begin{gathered}
0=a(0-1)^{2}+1 \\
-1=a(1) \\
a=-1
\end{gathered}
$$

Therefore, the quadratic function is

$$
\begin{aligned}
y & =(-1)(x-1)^{2}+1 \\
& =-\left(x^{2}-2 x+1\right)+1 \\
& =\left(-x^{2}+2 x-1\right)+1 \\
& =-x^{2}+2 x .
\end{aligned}
$$

